Module fast_transformers.recurrent.attention.self_attention.attention_layer

Similar to the corresponding module in fast_transformers.attention, this module performs all the query, key, value projections and output projections leaving the implementation of the attention to the inner attention module.

Expand source code
#
# Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/
# Written by Angelos Katharopoulos <angelos.katharopoulos@idiap.ch>,
# Apoorv Vyas <avyas@idiap.ch>
#

"""Similar to the corresponding module in fast_transformers.attention, this
module performs all the query, key, value projections and output projections
leaving the implementation of the attention to the inner attention module."""

from torch.nn import Linear, Module

from ....events import EventDispatcher
from ..._utils import check_state


class RecurrentAttentionLayer(Module):
    """See fast_transformers.attention.attention_layer.AttentionLayer.
    
    The only difference with the corresponding module is that this projects
    only one input and then calls the inner attention with the provided
    previous state.

    Arguments
    ---------
        attention: Specific inner attention implementation that just computes a
                   weighted average of values given a similarity of queries and
                   keys.
        d_model: The input feature dimensionality
        n_heads: The number of heads for the multi head attention
        d_keys: The dimensionality of the keys/queries
                (default: d_model/n_heads)
        d_values: The dimensionality of the values (default: d_model/n_heads)
        event_dispatcher: str or EventDispatcher instance to be used by this
                          module for dispatching events (default: the default
                          global dispatcher)
    """
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None, event_dispatcher=""):
        super(RecurrentAttentionLayer, self).__init__()

        # Fill d_keys and d_values
        d_keys = d_keys or (d_model//n_heads)
        d_values = d_values or (d_model//n_heads)

        self.inner_attention = attention
        self.query_projection = Linear(d_model, d_keys * n_heads)
        self.key_projection = Linear(d_model, d_keys * n_heads)
        self.value_projection = Linear(d_model, d_values * n_heads)
        self.out_projection = Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads
        self.event_dispatcher = EventDispatcher.get(event_dispatcher)

    def forward(self, query, key, value, state=None, memory=None):
        """Apply attention to the passed in query/key/value after projecting
        them to multiple heads.

        In the argument description we make use of the following sizes

            - N: the batch size
            - D: The input feature dimensionality passed in the constructor as
              'd_model'

        Arguments
        ---------
            query: (N, D) The tensor containing the queries
            key: (N, D) The tensor containing the keys
            value: (N, D) The tensor containing the values
            state: The state varies depending on the inner attention implementation
            memory: **Deprecated** and replaced by state

        Returns
        -------
            The new value for each query as a tensor of shape (N, D).
        """
        # Normalize the state/memory
        state = check_state(state, memory)

        # Project the queries/keys/values
        query = self.query_projection(query)
        key = self.key_projection(key)
        value = self.value_projection(value)

        # Reshape them into many heads and compute the attention
        N, D = query.shape
        H = self.n_heads
        new_value, state = self.inner_attention(
            query.view(N, H, -1),
            key.view(N, H, -1),
            value.view(N, H, -1),
            state
        )
        new_value = new_value.view(N, -1)

        # Project the output and return
        return self.out_projection(new_value), state

Classes

class RecurrentAttentionLayer (attention, d_model, n_heads, d_keys=None, d_values=None, event_dispatcher='')

See fast_transformers.attention.attention_layer.AttentionLayer.

The only difference with the corresponding module is that this projects only one input and then calls the inner attention with the provided previous state.

Arguments

attention: Specific inner attention implementation that just computes a
           weighted average of values given a similarity of queries and
           keys.
d_model: The input feature dimensionality
n_heads: The number of heads for the multi head attention
d_keys: The dimensionality of the keys/queries
        (default: d_model/n_heads)
d_values: The dimensionality of the values (default: d_model/n_heads)
event_dispatcher: str or EventDispatcher instance to be used by this
                  module for dispatching events (default: the default
                  global dispatcher)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class RecurrentAttentionLayer(Module):
    """See fast_transformers.attention.attention_layer.AttentionLayer.
    
    The only difference with the corresponding module is that this projects
    only one input and then calls the inner attention with the provided
    previous state.

    Arguments
    ---------
        attention: Specific inner attention implementation that just computes a
                   weighted average of values given a similarity of queries and
                   keys.
        d_model: The input feature dimensionality
        n_heads: The number of heads for the multi head attention
        d_keys: The dimensionality of the keys/queries
                (default: d_model/n_heads)
        d_values: The dimensionality of the values (default: d_model/n_heads)
        event_dispatcher: str or EventDispatcher instance to be used by this
                          module for dispatching events (default: the default
                          global dispatcher)
    """
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None, event_dispatcher=""):
        super(RecurrentAttentionLayer, self).__init__()

        # Fill d_keys and d_values
        d_keys = d_keys or (d_model//n_heads)
        d_values = d_values or (d_model//n_heads)

        self.inner_attention = attention
        self.query_projection = Linear(d_model, d_keys * n_heads)
        self.key_projection = Linear(d_model, d_keys * n_heads)
        self.value_projection = Linear(d_model, d_values * n_heads)
        self.out_projection = Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads
        self.event_dispatcher = EventDispatcher.get(event_dispatcher)

    def forward(self, query, key, value, state=None, memory=None):
        """Apply attention to the passed in query/key/value after projecting
        them to multiple heads.

        In the argument description we make use of the following sizes

            - N: the batch size
            - D: The input feature dimensionality passed in the constructor as
              'd_model'

        Arguments
        ---------
            query: (N, D) The tensor containing the queries
            key: (N, D) The tensor containing the keys
            value: (N, D) The tensor containing the values
            state: The state varies depending on the inner attention implementation
            memory: **Deprecated** and replaced by state

        Returns
        -------
            The new value for each query as a tensor of shape (N, D).
        """
        # Normalize the state/memory
        state = check_state(state, memory)

        # Project the queries/keys/values
        query = self.query_projection(query)
        key = self.key_projection(key)
        value = self.value_projection(value)

        # Reshape them into many heads and compute the attention
        N, D = query.shape
        H = self.n_heads
        new_value, state = self.inner_attention(
            query.view(N, H, -1),
            key.view(N, H, -1),
            value.view(N, H, -1),
            state
        )
        new_value = new_value.view(N, -1)

        # Project the output and return
        return self.out_projection(new_value), state

Ancestors

  • torch.nn.modules.module.Module

Methods

def forward(self, query, key, value, state=None, memory=None)

Apply attention to the passed in query/key/value after projecting them to multiple heads.

In the argument description we make use of the following sizes

- N: the batch size
- D: The input feature dimensionality passed in the constructor as
  'd_model'

Arguments

query: (N, D) The tensor containing the queries
key: (N, D) The tensor containing the keys
value: (N, D) The tensor containing the values
state: The state varies depending on the inner attention implementation
memory: **Deprecated** and replaced by state

Returns

The new value for each query as a tensor of shape (N, D).
Expand source code
def forward(self, query, key, value, state=None, memory=None):
    """Apply attention to the passed in query/key/value after projecting
    them to multiple heads.

    In the argument description we make use of the following sizes

        - N: the batch size
        - D: The input feature dimensionality passed in the constructor as
          'd_model'

    Arguments
    ---------
        query: (N, D) The tensor containing the queries
        key: (N, D) The tensor containing the keys
        value: (N, D) The tensor containing the values
        state: The state varies depending on the inner attention implementation
        memory: **Deprecated** and replaced by state

    Returns
    -------
        The new value for each query as a tensor of shape (N, D).
    """
    # Normalize the state/memory
    state = check_state(state, memory)

    # Project the queries/keys/values
    query = self.query_projection(query)
    key = self.key_projection(key)
    value = self.value_projection(value)

    # Reshape them into many heads and compute the attention
    N, D = query.shape
    H = self.n_heads
    new_value, state = self.inner_attention(
        query.view(N, H, -1),
        key.view(N, H, -1),
        value.view(N, H, -1),
        state
    )
    new_value = new_value.view(N, -1)

    # Project the output and return
    return self.out_projection(new_value), state