Module fast_transformers.recurrent.attention.cross_attention.linear_attention
Implement unmasked linear attention as a recurrent cross attention module to speed up autoregressive decoding.
Expand source code
#
# Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/
# Written by Angelos Katharopoulos <angelos.katharopoulos@idiap.ch>
#
"""Implement unmasked linear attention as a recurrent cross attention module to
speed up autoregressive decoding."""
import torch
from torch.nn import Module
from ....attention_registry import RecurrentCrossAttentionRegistry, Optional, Int, \
Callable, EventDispatcherInstance
from ....events import EventDispatcher
from ....feature_maps import elu_feature_map
class RecurrentCrossLinearAttention(Module):
"""Implement autoregressive linear cross attention as a recurrent
module.
See fast_transformers.attention.linear_attention.LinearAttention .
Arguments
---------
feature_map: callable, a callable that applies the feature map to the
last dimension of a tensor (default: elu(x)+1)
eps: float, a small number to ensure the numerical stability of the
denominator (default: 1e-6)
event_dispatcher: str or EventDispatcher instance to be used by this
module for dispatching events (default: the default
global dispatcher)
"""
def __init__(self, query_dimensions, feature_map=None, eps=1e-6,
event_dispatcher=""):
super(RecurrentCrossLinearAttention, self).__init__()
self.feature_map = (
feature_map(query_dimensions) if feature_map else
elu_feature_map(query_dimensions)
)
self.eps = eps
self.event_dispatcher = EventDispatcher.get(event_dispatcher)
def forward(self, query, keys, values, key_lengths, state=None):
# If this is a new sequence re initialize the feature map
if state is None:
self.feature_map.new_feature_map()
# Compute the feature representation of the query
Q = self.feature_map.forward_queries(query)
# If the state is not given compute the key-value matrix and the
# normalizers, namely compute whatever is needed in order to attend to
# keys and values with a given query.
if state is None:
K = self.feature_map.forward_keys(keys)
K = K * key_lengths.float_matrix[:, :, None, None]
S = torch.einsum("nshd,nshm->nhmd", K, values)
Z = K.sum(dim=1)
else:
S, Z = state
# Given S and Z now we can efficiently compute the new value
QZ = 1/(torch.einsum("nhd,nhd->nh", Q, Z)+self.eps)
V = torch.einsum("nhd,nhmd,nh->nhm", Q, S, QZ)
return V.contiguous(), [S, Z]
# Register the attention implementation so that it becomes available in our
# builders
RecurrentCrossAttentionRegistry.register(
"linear", RecurrentCrossLinearAttention,
[
("query_dimensions", Int),
("feature_map", Optional(Callable)),
("event_dispatcher", Optional(EventDispatcherInstance, ""))
]
)
Classes
class RecurrentCrossLinearAttention (query_dimensions, feature_map=None, eps=1e-06, event_dispatcher='')
-
Implement autoregressive linear cross attention as a recurrent module.
See fast_transformers.attention.linear_attention.LinearAttention .
Arguments
feature_map: callable, a callable that applies the feature map to the last dimension of a tensor (default: elu(x)+1) eps: float, a small number to ensure the numerical stability of the denominator (default: 1e-6) event_dispatcher: str or EventDispatcher instance to be used by this module for dispatching events (default: the default global dispatcher)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class RecurrentCrossLinearAttention(Module): """Implement autoregressive linear cross attention as a recurrent module. See fast_transformers.attention.linear_attention.LinearAttention . Arguments --------- feature_map: callable, a callable that applies the feature map to the last dimension of a tensor (default: elu(x)+1) eps: float, a small number to ensure the numerical stability of the denominator (default: 1e-6) event_dispatcher: str or EventDispatcher instance to be used by this module for dispatching events (default: the default global dispatcher) """ def __init__(self, query_dimensions, feature_map=None, eps=1e-6, event_dispatcher=""): super(RecurrentCrossLinearAttention, self).__init__() self.feature_map = ( feature_map(query_dimensions) if feature_map else elu_feature_map(query_dimensions) ) self.eps = eps self.event_dispatcher = EventDispatcher.get(event_dispatcher) def forward(self, query, keys, values, key_lengths, state=None): # If this is a new sequence re initialize the feature map if state is None: self.feature_map.new_feature_map() # Compute the feature representation of the query Q = self.feature_map.forward_queries(query) # If the state is not given compute the key-value matrix and the # normalizers, namely compute whatever is needed in order to attend to # keys and values with a given query. if state is None: K = self.feature_map.forward_keys(keys) K = K * key_lengths.float_matrix[:, :, None, None] S = torch.einsum("nshd,nshm->nhmd", K, values) Z = K.sum(dim=1) else: S, Z = state # Given S and Z now we can efficiently compute the new value QZ = 1/(torch.einsum("nhd,nhd->nh", Q, Z)+self.eps) V = torch.einsum("nhd,nhmd,nh->nhm", Q, S, QZ) return V.contiguous(), [S, Z]
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, query, keys, values, key_lengths, state=None)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, query, keys, values, key_lengths, state=None): # If this is a new sequence re initialize the feature map if state is None: self.feature_map.new_feature_map() # Compute the feature representation of the query Q = self.feature_map.forward_queries(query) # If the state is not given compute the key-value matrix and the # normalizers, namely compute whatever is needed in order to attend to # keys and values with a given query. if state is None: K = self.feature_map.forward_keys(keys) K = K * key_lengths.float_matrix[:, :, None, None] S = torch.einsum("nshd,nshm->nhmd", K, values) Z = K.sum(dim=1) else: S, Z = state # Given S and Z now we can efficiently compute the new value QZ = 1/(torch.einsum("nhd,nhd->nh", Q, Z)+self.eps) V = torch.einsum("nhd,nhmd,nh->nhm", Q, S, QZ) return V.contiguous(), [S, Z]