Module fast_transformers.recurrent.attention.cross_attention.full_attention

Implement the typical softmax attention as a recurrent cross attention module to speed up autoregressive decoding.

Expand source code
#
# Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/
# Written by Angelos Katharopoulos <angelos.katharopoulos@idiap.ch>
#

"""Implement the typical softmax attention as a recurrent cross attention
module to speed up autoregressive decoding."""

from math import sqrt

import torch
from torch.nn import Dropout, Module

from ....attention_registry import RecurrentCrossAttentionRegistry, Optional, \
    Float, EventDispatcherInstance
from ....events import EventDispatcher

class RecurrentCrossFullAttention(Module):
    """Implement autoregressive softmax cross attention as a recurrent
    module.

    Arguments
    ---------
        softmax_temp: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.1)
        event_dispatcher: str or EventDispatcher instance to be used by this
                          module for dispatching events (default: the default
                          global dispatcher)
    """
    def __init__(self, softmax_temp=None, attention_dropout=0.1,
                 event_dispatcher=""):
        super(RecurrentCrossFullAttention, self).__init__()
        self.softmax_temp = softmax_temp
        self.dropout = Dropout(attention_dropout)
        self.event_dispatcher = EventDispatcher.get(event_dispatcher)

    def forward(self, query, keys, values, key_lengths, state=None):
        # Extract some shapes and compute the temperature
        N, H, E = query.shape
        softmax_temp = self.softmax_temp or 1./sqrt(E)

        # Extract the keys and values either from the arguments or the state
        if state is not None:
            keys, values = state

        # Compute the unnormalized attention and apply the key length mask
        QK = torch.einsum("nhe,nshe->nsh", query, keys)
        QK = QK + key_lengths.additive_matrix[:, :, None]

        # Compute the attention and the weighted average
        A = self.dropout(torch.softmax(softmax_temp * QK, dim=1))
        V = torch.einsum("nsh,nshd->nhd", A, values)

        # Make sure that we return a contiguous value
        return V.contiguous(), [keys, values]


# Register the attention implementation so that it becomes available in our
# builders
RecurrentCrossAttentionRegistry.register(
    "full", RecurrentCrossFullAttention,
    [
        ("softmax_temp", Optional(Float)),
        ("attention_dropout", Optional(Float, 0.1)),
        ("event_dispatcher", Optional(EventDispatcherInstance, ""))
    ]
)

Classes

class RecurrentCrossFullAttention (softmax_temp=None, attention_dropout=0.1, event_dispatcher='')

Implement autoregressive softmax cross attention as a recurrent module.

Arguments

softmax_temp: The temperature to use for the softmax attention.
              (default: 1/sqrt(d_keys) where d_keys is computed at
              runtime)
attention_dropout: The dropout rate to apply to the attention
                   (default: 0.1)
event_dispatcher: str or EventDispatcher instance to be used by this
                  module for dispatching events (default: the default
                  global dispatcher)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class RecurrentCrossFullAttention(Module):
    """Implement autoregressive softmax cross attention as a recurrent
    module.

    Arguments
    ---------
        softmax_temp: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.1)
        event_dispatcher: str or EventDispatcher instance to be used by this
                          module for dispatching events (default: the default
                          global dispatcher)
    """
    def __init__(self, softmax_temp=None, attention_dropout=0.1,
                 event_dispatcher=""):
        super(RecurrentCrossFullAttention, self).__init__()
        self.softmax_temp = softmax_temp
        self.dropout = Dropout(attention_dropout)
        self.event_dispatcher = EventDispatcher.get(event_dispatcher)

    def forward(self, query, keys, values, key_lengths, state=None):
        # Extract some shapes and compute the temperature
        N, H, E = query.shape
        softmax_temp = self.softmax_temp or 1./sqrt(E)

        # Extract the keys and values either from the arguments or the state
        if state is not None:
            keys, values = state

        # Compute the unnormalized attention and apply the key length mask
        QK = torch.einsum("nhe,nshe->nsh", query, keys)
        QK = QK + key_lengths.additive_matrix[:, :, None]

        # Compute the attention and the weighted average
        A = self.dropout(torch.softmax(softmax_temp * QK, dim=1))
        V = torch.einsum("nsh,nshd->nhd", A, values)

        # Make sure that we return a contiguous value
        return V.contiguous(), [keys, values]

Ancestors

  • torch.nn.modules.module.Module

Methods

def forward(self, query, keys, values, key_lengths, state=None)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, query, keys, values, key_lengths, state=None):
    # Extract some shapes and compute the temperature
    N, H, E = query.shape
    softmax_temp = self.softmax_temp or 1./sqrt(E)

    # Extract the keys and values either from the arguments or the state
    if state is not None:
        keys, values = state

    # Compute the unnormalized attention and apply the key length mask
    QK = torch.einsum("nhe,nshe->nsh", query, keys)
    QK = QK + key_lengths.additive_matrix[:, :, None]

    # Compute the attention and the weighted average
    A = self.dropout(torch.softmax(softmax_temp * QK, dim=1))
    V = torch.einsum("nsh,nshd->nhd", A, values)

    # Make sure that we return a contiguous value
    return V.contiguous(), [keys, values]