Module fast_transformers.attention.reformer_attention
Implement the Reformer attention from the paper "Reformer the efficient transformer".
Expand source code
#
# Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/
# Written by Angelos Katharopoulos <angelos.katharopoulos@idiap.ch>,
# Apoorv Vyas <avyas@idiap.ch>
#
"""Implement the Reformer attention from the paper
"Reformer the efficient transformer"."""
from math import sqrt
import torch
from torch.nn import Dropout, Module
from torch.nn.init import normal_
from ..attention_registry import AttentionRegistry, Optional, Int, Float, \
Bool, EventDispatcherInstance
from ..events import EventDispatcher
from ..masking import FullMask
class ReformerAttention(Module):
"""Implement the attention module of the paper "Reformer the efficient
transformer"
Arguments
---------
chunk_size : Chunk size for each block (default: 32)
bits : Number of bits for hashing (default: 8)
rounds : Number of rounds of attention computation (default: 4)
masked : If true, the query does not attend to itsself (default: False)
softmax_temp: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.1)
event_dispatcher: str or EventDispatcher instance to be used by this
module for dispatching events (default: the default
global dispatcher)
"""
def __init__(self, chunk_size=32, bits=8, rounds=4, masked=False,
softmax_temp=None, attention_dropout=0.1,
event_dispatcher=""):
super(ReformerAttention, self).__init__()
self.chunk_size = chunk_size
self.bits = bits
self.rounds = rounds
self.masked = masked
self.softmax_temp = softmax_temp
self.dropout = Dropout(attention_dropout)
self.event_dispatcher = EventDispatcher.get(event_dispatcher)
def _normalize(self, x):
norms = torch.sqrt(torch.einsum("nlhe,nlhe->nlh", x, x))
x_normed = x / norms.unsqueeze(-1)
return x_normed
def _look_back(self, x):
xshape = x.shape
return torch.cat([
x.new_zeros((xshape[0], 1) + xshape[2:]),
torch.repeat_interleave(x, 2, dim=1)[:,:-1]
], dim=1).view(xshape[0], xshape[1], 2*xshape[2], *xshape[3:])
def _reformer_round(self, Q, K, V, mask, softmax_temp):
# Hash the queries
N, L, H, E = Q.shape
planes = Q.new_empty(self.bits, E)
normal_(planes)
projected = torch.einsum("nlhe,be->nlhb", K, planes)
hashes = torch.argmax(
torch.cat([projected, -projected], dim=-1),
dim=-1
)
# Sort the queries in order to group them
group = torch.argsort(hashes, dim=1)
invert_group = torch.empty_like(group)
batch_indices = torch.arange(N, device=hashes.device).view(N, 1, 1)
sequence_indices = torch.arange(L, device=hashes.device).view(1, L, 1)
head_indices = torch.arange(H, device=hashes.device).view(1, 1, H)
invert_group[batch_indices, group, head_indices] = sequence_indices
group = group.view(N, -1, self.chunk_size, H)
invert_group = invert_group.view(N, -1, self.chunk_size, H)
batch_indices = batch_indices.unsqueeze(1)
head_indices = head_indices.unsqueeze(0)
# Reorder Q, V and mask
Q_grouped = Q[batch_indices, group, head_indices]
K_grouped = K[batch_indices, group, head_indices]
V_grouped = V[batch_indices, group, head_indices]
mask_grouped = mask[
batch_indices.unsqueeze(1),
group.unsqueeze(3),
self._look_back(group).unsqueeze(2)
]
mask_grouped[:, 0, :, :Q_grouped.shape[2]] = float("-inf")
# When everything is masked just unmask everything because it doesn't
# matter what the output is at those positions
# This is to avoid inf/nans in the new values at masked positions
infmask = torch.isinf(mask_grouped)
infmask = torch.all(infmask, dim=3, keepdims=True)
mask_grouped = mask_grouped.masked_fill(infmask, 0.)
# Attention
K_grouped = self._look_back(K_grouped)
QQ = torch.einsum("nblhe,nbshe->nbhls", Q_grouped, K_grouped)
QQ = QQ + mask_grouped.permute(0, 1, 4, 2, 3)
A = torch.softmax(softmax_temp * QQ, dim=-1)
A = self.dropout(A)
# Values
V_grouped = self._look_back(V_grouped)
V_new = torch.einsum("nbhls,nbshe->nblhe", A, V_grouped)
V_new = V_new.contiguous().view(N, -1, H, E)
V_new = V_new[batch_indices, invert_group, head_indices]
V_new = V_new.contiguous().view(N, L, H, E)
return V_new
def forward(self, queries, keys, values, attn_mask, query_lengths,
key_lengths):
# Extract the dimensions of query, key, value
N, L, H, E = queries.shape
softmax_temp = self.softmax_temp or 1./sqrt(E)
# Create the mask
mask = key_lengths.additive_matrix.unsqueeze(1).expand(N, L, L)
if self.masked:
mask = mask + torch.eye(L, device=queries.device).unsqueeze(0)*float(-1e9)
if not attn_mask.all_ones:
mask = mask + attn_mask.additive_matrix.unsqueeze(0)
# Get normalized Queries as Keys
K = self._normalize(queries)
# Zero the masked out keys
K = K * key_lengths.float_matrix.view(N, L, 1, 1)
V_new = 0
factor = 1/self.rounds
for i in range(self.rounds):
V_new = V_new + \
factor * self._reformer_round(queries, K, values, mask, softmax_temp)
return V_new
# Register the attention implementation so that it becomes available in our
# builders
AttentionRegistry.register(
"reformer", ReformerAttention,
[
("chunk_size", Optional(Int, 32)),
("bits", Optional(Int, 32)),
("rounds", Optional(Int, 4)),
("masked", Optional(Bool, False)),
("softmax_temp", Optional(Float)),
("attention_dropout", Optional(Float, 0.1)),
("event_dispatcher", Optional(EventDispatcherInstance, ""))
]
)
Classes
class ReformerAttention (chunk_size=32, bits=8, rounds=4, masked=False, softmax_temp=None, attention_dropout=0.1, event_dispatcher='')
-
Implement the attention module of the paper "Reformer the efficient transformer"
Arguments
chunk_size : Chunk size for each block (default: 32) bits : Number of bits for hashing (default: 8) rounds : Number of rounds of attention computation (default: 4) masked : If true, the query does not attend to itsself (default: False) softmax_temp: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.1) event_dispatcher: str or EventDispatcher instance to be used by this module for dispatching events (default: the default global dispatcher)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class ReformerAttention(Module): """Implement the attention module of the paper "Reformer the efficient transformer" Arguments --------- chunk_size : Chunk size for each block (default: 32) bits : Number of bits for hashing (default: 8) rounds : Number of rounds of attention computation (default: 4) masked : If true, the query does not attend to itsself (default: False) softmax_temp: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.1) event_dispatcher: str or EventDispatcher instance to be used by this module for dispatching events (default: the default global dispatcher) """ def __init__(self, chunk_size=32, bits=8, rounds=4, masked=False, softmax_temp=None, attention_dropout=0.1, event_dispatcher=""): super(ReformerAttention, self).__init__() self.chunk_size = chunk_size self.bits = bits self.rounds = rounds self.masked = masked self.softmax_temp = softmax_temp self.dropout = Dropout(attention_dropout) self.event_dispatcher = EventDispatcher.get(event_dispatcher) def _normalize(self, x): norms = torch.sqrt(torch.einsum("nlhe,nlhe->nlh", x, x)) x_normed = x / norms.unsqueeze(-1) return x_normed def _look_back(self, x): xshape = x.shape return torch.cat([ x.new_zeros((xshape[0], 1) + xshape[2:]), torch.repeat_interleave(x, 2, dim=1)[:,:-1] ], dim=1).view(xshape[0], xshape[1], 2*xshape[2], *xshape[3:]) def _reformer_round(self, Q, K, V, mask, softmax_temp): # Hash the queries N, L, H, E = Q.shape planes = Q.new_empty(self.bits, E) normal_(planes) projected = torch.einsum("nlhe,be->nlhb", K, planes) hashes = torch.argmax( torch.cat([projected, -projected], dim=-1), dim=-1 ) # Sort the queries in order to group them group = torch.argsort(hashes, dim=1) invert_group = torch.empty_like(group) batch_indices = torch.arange(N, device=hashes.device).view(N, 1, 1) sequence_indices = torch.arange(L, device=hashes.device).view(1, L, 1) head_indices = torch.arange(H, device=hashes.device).view(1, 1, H) invert_group[batch_indices, group, head_indices] = sequence_indices group = group.view(N, -1, self.chunk_size, H) invert_group = invert_group.view(N, -1, self.chunk_size, H) batch_indices = batch_indices.unsqueeze(1) head_indices = head_indices.unsqueeze(0) # Reorder Q, V and mask Q_grouped = Q[batch_indices, group, head_indices] K_grouped = K[batch_indices, group, head_indices] V_grouped = V[batch_indices, group, head_indices] mask_grouped = mask[ batch_indices.unsqueeze(1), group.unsqueeze(3), self._look_back(group).unsqueeze(2) ] mask_grouped[:, 0, :, :Q_grouped.shape[2]] = float("-inf") # When everything is masked just unmask everything because it doesn't # matter what the output is at those positions # This is to avoid inf/nans in the new values at masked positions infmask = torch.isinf(mask_grouped) infmask = torch.all(infmask, dim=3, keepdims=True) mask_grouped = mask_grouped.masked_fill(infmask, 0.) # Attention K_grouped = self._look_back(K_grouped) QQ = torch.einsum("nblhe,nbshe->nbhls", Q_grouped, K_grouped) QQ = QQ + mask_grouped.permute(0, 1, 4, 2, 3) A = torch.softmax(softmax_temp * QQ, dim=-1) A = self.dropout(A) # Values V_grouped = self._look_back(V_grouped) V_new = torch.einsum("nbhls,nbshe->nblhe", A, V_grouped) V_new = V_new.contiguous().view(N, -1, H, E) V_new = V_new[batch_indices, invert_group, head_indices] V_new = V_new.contiguous().view(N, L, H, E) return V_new def forward(self, queries, keys, values, attn_mask, query_lengths, key_lengths): # Extract the dimensions of query, key, value N, L, H, E = queries.shape softmax_temp = self.softmax_temp or 1./sqrt(E) # Create the mask mask = key_lengths.additive_matrix.unsqueeze(1).expand(N, L, L) if self.masked: mask = mask + torch.eye(L, device=queries.device).unsqueeze(0)*float(-1e9) if not attn_mask.all_ones: mask = mask + attn_mask.additive_matrix.unsqueeze(0) # Get normalized Queries as Keys K = self._normalize(queries) # Zero the masked out keys K = K * key_lengths.float_matrix.view(N, L, 1, 1) V_new = 0 factor = 1/self.rounds for i in range(self.rounds): V_new = V_new + \ factor * self._reformer_round(queries, K, values, mask, softmax_temp) return V_new
Ancestors
- torch.nn.modules.module.Module
Methods
def forward(self, queries, keys, values, attn_mask, query_lengths, key_lengths)
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, queries, keys, values, attn_mask, query_lengths, key_lengths): # Extract the dimensions of query, key, value N, L, H, E = queries.shape softmax_temp = self.softmax_temp or 1./sqrt(E) # Create the mask mask = key_lengths.additive_matrix.unsqueeze(1).expand(N, L, L) if self.masked: mask = mask + torch.eye(L, device=queries.device).unsqueeze(0)*float(-1e9) if not attn_mask.all_ones: mask = mask + attn_mask.additive_matrix.unsqueeze(0) # Get normalized Queries as Keys K = self._normalize(queries) # Zero the masked out keys K = K * key_lengths.float_matrix.view(N, L, 1, 1) V_new = 0 factor = 1/self.rounds for i in range(self.rounds): V_new = V_new + \ factor * self._reformer_round(queries, K, values, mask, softmax_temp) return V_new